Package ann4j
Class ModelEvaluator
java.lang.Object
ann4j.ModelEvaluator
-
Field Summary
Fields -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptiondoubleIt returns the accuracy of the player as a percentagedoubleThis function returns the testing accuracy of the modeldoubleThis function returns the training accuracy of the modelvoidinitializeList(int size) Initialize the confusion matrix to all zerosvoidprintConfusionMatrix(InputFileReader fileReader) It prints the confusion matrixvoidreset()This function resets the confusion matrix, the correct counter, and the turns countervoidvoidsetTestingaccuracy(double accuracy) This function sets the testing accuracy of the modelvoidsetTrainingaccuracy(double accuracy) This function sets the training accuracy of the modelvoidupdateConfusionMatrix(ArrayList<Double> expectedOutputArray, int predictedNeuronNum) This function updates the confusion matrix by comparing the expected output array with the predicted output arrayvoidupdateConfusionMatrix(ArrayList<Double> expectedOutputArray, ArrayList<Double> actualOutputArray) This function takes in two arrays, one of expected outputs and one of actual outputs, and updates the confusion matrix accordingly __ __ __ __ |TP FP | 0 1 |FN TN | 2 3voidupdatePredictionData(double prediction, double label, double confidance) This function updates the prediction data
-
Field Details
-
confusionMatrix
-
-
Constructor Details
-
ModelEvaluator
public ModelEvaluator()
-
-
Method Details
-
updateConfusionMatrix
This function updates the confusion matrix by comparing the expected output array with the predicted output array- Parameters:
expectedOutputArray- The expected output of the neural network.predictedNeuronNum- The index of the neuron that was predicted to be the correct one.
-
updateConfusionMatrix
public void updateConfusionMatrix(ArrayList<Double> expectedOutputArray, ArrayList<Double> actualOutputArray) This function takes in two arrays, one of expected outputs and one of actual outputs, and updates the confusion matrix accordingly __ __ __ __ |TP FP | 0 1 |FN TN | 2 3- Parameters:
expectedOutputArray- The expected output of the neural networkactualOutputArray- The actual output of the neural network
-
initializeList
public void initializeList(int size) Initialize the confusion matrix to all zeros- Parameters:
size- The number of classes in the dataset.
-
updatePredictionData
public void updatePredictionData(double prediction, double label, double confidance) This function updates the prediction data- Parameters:
prediction- The prediction of the model.label- The actual label of the data.confidance- The confidance of the prediction.
-
reset
public void reset()This function resets the confusion matrix, the correct counter, and the turns counter -
resetConfusionMatrix
public void resetConfusionMatrix() -
getAccuracy
public double getAccuracy()It returns the accuracy of the player as a percentage- Returns:
- The accuracy of the player.
-
setTrainingaccuracy
public void setTrainingaccuracy(double accuracy) This function sets the training accuracy of the model- Parameters:
accuracy- The accuracy of the model on the training data.
-
getTrainingAccuracy
public double getTrainingAccuracy()This function returns the training accuracy of the model- Returns:
- The training accuracy of the model.
-
setTestingaccuracy
public void setTestingaccuracy(double accuracy) This function sets the testing accuracy of the model- Parameters:
accuracy- The accuracy of the model on the test data.
-
getTestingAccuracy
public double getTestingAccuracy()This function returns the testing accuracy of the model- Returns:
- The testing accuracy of the model.
-
printConfusionMatrix
It prints the confusion matrix- Parameters:
fileReader- This is the object of the InputFileReader class.
-