Index
All Classes and Interfaces|All Packages
A
- addLeftConnections(Connection) - Method in class ann4j.Neuron
-
This function adds a connection to the leftConnections list.
- addNeuron(Neuron) - Method in class ann4j.Layer
-
This function adds a neuron to the list of neurons
- addNeuronToBeObserved(int, int) - Method in class ann4j.NeuronObserver
-
Add a neuron to the list of objects to be observed.
- addObjectToBeObserved(Observable) - Method in class ann4j.NeuronObserver
-
This function adds an object to the list of objects that this object will observe.
- addObjectToBeObserved(Observable) - Method in interface ann4j.Observer
-
Add an object to the list of objects to be observed.
- addRightConnections(Connection) - Method in class ann4j.Neuron
-
This function adds a connection to the rightConnections list
- ann4j - package ann4j
- average(double[]) - Static method in class ann4j.NN
-
It takes an array of doubles, adds them all together, divides by the length of the array, and returns the result
- average(ArrayList<Double>) - Static method in class ann4j.NN
-
It takes an ArrayList of Doubles as input, and returns the average of the elements in the ArrayList
B
- backPropagate() - Method in class ann4j.Connection
-
The backpropagation algorithm is calculating the gradient of the loss function with respect to the weight.
- backwardPropagate() - Method in class ann4j.Layer
-
This function iterates through the list of neurons and calls the backwardPropagate method on each neuron
- backwardPropagate() - Method in class ann4j.LayerManager
-
For each layer in the network, starting from the last layer, call the backwardPropagate function of that layer
- backwardPropagate() - Method in class ann4j.Neuron
-
The neuron first sets its delta, then backpropagates through all of its left connections, and then changes its bias
- bias - Variable in class ann4j.Neuron
C
- calculateActivationForwardPropagation() - Method in class ann4j.Connection
-
Calculate the activation of the left neuron times the weight of the connection.
- calculateMSE() - Method in class ann4j.LayerManager
-
This function calculates the mean squared error of the network
- calculateMSE(OutputLayer, ArrayList<Double>) - Static method in class ann4j.MeanSquaredErrorCalculator
-
The function takes in an output layer and an array list of expected outputs.
- changeWishlist - Variable in class ann4j.Connection
- clear() - Method in class ann4j.NeuronObserver
-
Clearing the list of objects that this object will observe.
- clear() - Method in interface ann4j.Observer
- confusionMatrix - Variable in class ann4j.ModelEvaluator
- Connection - Class in ann4j
- Connection(Neuron, Neuron) - Constructor for class ann4j.Connection
D
- delta - Variable in class ann4j.Neuron
- deregisterObserver(NeuronObserver) - Method in class ann4j.Neuron
- deregisterObserver(NeuronObserver) - Method in interface ann4j.Observable
-
Deregisters the observer from the observable
- display() - Static method in class ann4j.parameter
-
Ends the display of the current page.
E
- end() - Static method in class ann4j.Writer
-
This function closes the file that we opened in the start() function
- exclude() - Method in class ann4j.Neuron
-
This function sets the value of the isIncluded variable to false, after which it wont be included in forward propagation
- expectedLayer - Variable in class ann4j.Trainer
- expectedOutputArray - Variable in class ann4j.MNISTDataBaseFileReader
- ExpectedOutputArrayList - Static variable in class ann4j.LayerManager
F
- filename - Variable in class ann4j.InputFileReader
- fileName - Variable in class ann4j.MNISTDataBaseFileReader
- forwardPropagate() - Method in class ann4j.Layer
-
The forwardPropagate function iterates through the list of neurons and calls the forwardPropagate method on each neuron
- forwardPropagate() - Method in class ann4j.LayerManager
-
The forwardPropagate() method is called on every layer in the listOfLayers ArrayList, except the input layer
- forwardPropagate() - Method in class ann4j.Neuron
-
The activation of the neuron is set to the rectified value of the weighted sum of the left connections plus the bias
- forwardPropagatewithExclusionInputLayer() - Method in class ann4j.LayerManager
-
The function calculates the relevance of each pixel in the input image by excluding each pixel and calculating the loss function
- forwardPropagatewithExclusionInputLayerOnKSamples(int) - Method in class ann4j.Trainer
G
- generateExpectedOutputArrayFromLabel() - Method in class ann4j.MNISTDataBaseFileReader
-
This function is responsible for generating the output neurons
- generateInputFromBigArray(ArrayList<Double>) - Method in class ann4j.MNISTDataBaseFileReader
-
It takes the array of all the values in the dataset and returns an array of all the values except the first one
- getAccuracy() - Method in class ann4j.ModelEvaluator
-
It returns the accuracy of the player as a percentage
- getActivation() - Method in class ann4j.Neuron
-
This function returns the activation of the neuron
- getBackwardWeightedSum() - Method in class ann4j.Connection
-
The function returns the gradient of the loss function with respect to the weight
- getBatchsize() - Static method in class ann4j.parameter
- getBias() - Method in class ann4j.Neuron
-
This function returns the bias of the neuron
- getBiasLearningRate() - Static method in class ann4j.parameter
-
This function returns the bias learning rate
- getconfidence() - Method in class ann4j.LayerManager
-
It returns the confidence of the most significant neuron in the output layer
- getDelta() - Method in class ann4j.Neuron
-
This function returns the value of the delta variable
- getEpsillion() - Static method in class ann4j.parameter
-
Get the value of epsillion for relevance propagation
- getExpectedOutputArray() - Method in class ann4j.InputFileReader
-
This function returns an ArrayList of Doubles that represents the expected output of the neural network
- getExpectedOutputArray() - Method in class ann4j.MNISTDataBaseFileReader
-
This function returns the expected output array
- getInputArray() - Method in class ann4j.InputFileReader
-
This function returns an ArrayList of Doubles that represents the input layer of the neural network
- getInputArray() - Method in class ann4j.MNISTDataBaseFileReader
-
This function returns the inputArray
- getInputLayer() - Method in class ann4j.LayerManager
-
This function returns the input layer of the neural network.
- getInstance() - Static method in class ann4j.HiddenLayerNeuronBehaviour
-
The function returns an instance of the class if one exists, otherwise it creates a new instance and returns it
- getInstance() - Static method in class ann4j.InputLayerNeuronBehaviour
-
(singleton pattern) If the instance of the class is null, create a new instance of the class and return it
- getInstance() - Static method in class ann4j.OutputLayerNeuronBehaviour
-
If myInstance is null, create a new instance of OutputLayerNeuronBehaviour and assign it to myInstance.
- getLabel() - Method in class ann4j.InputFileReader
-
This function returns the label.
- getLabel() - Method in class ann4j.MNISTDataBaseFileReader
-
This function is responsible for setting the labels of the data.
- getLayer(int) - Method in class ann4j.LayerManager
-
This function returns the layer at the specified index
- getLayerArray() - Static method in class ann4j.parameter
- getLayerManager() - Method in class ann4j.Trainer
-
Returns the LayerManager object that is used to manage the layers in this map.
- getLayerNum() - Method in class ann4j.Neuron
-
This function returns the layer number of the neuron
- getLearningRate() - Static method in class ann4j.parameter
- getListOfNeurons() - Method in class ann4j.Layer
-
This function returns the list of neurons in the layer
- getModelEvaluator() - Static method in class ann4j.parameter
-
> The function `getModelEvaluator()` returns a new instance of the class `ModelEvaluator`
- getModelEvaluator() - Method in class ann4j.Trainer
-
This function returns the model evaluator
- getMostSignificantNeuronAsPredictionInHiddenLayer() - Method in class ann4j.LayerManager
-
It returns the index of the most significant neuron in the hidden layer
- getMostSignificantNeuronNumAsPrediction() - Method in class ann4j.LayerManager
-
It returns the index of the neuron in the output layer that has the highest activation value
- getNeuron(int) - Method in class ann4j.Layer
-
This function returns the neuron at the specified index in the list of neurons
- getNeuronNum() - Method in class ann4j.Neuron
-
This function returns the number of neurons in the layer
- getNeuronNumberToBeTestedinRelavancePropagation() - Static method in class ann4j.LayerManager
-
This function returns the number of neurons to be tested in relevance propagation
- getOutput() - Method in class ann4j.LayerManager
-
Return the last layer in the listOfLayers ArrayList.
- getOutputLayer() - Method in class ann4j.LayerManager
-
This function returns the output layer of the neural network
- getPredictionFromNeuronNum(int) - Method in class ann4j.InputFileReader
-
> This function takes in the most significant neuron number and returns the prediction
- getPredictionFromNeuronNum(int) - Method in class ann4j.MNISTDataBaseFileReader
- getRandom() - Static method in class ann4j.NN
-
This function returns a random number between 0 and 1.
- getSize() - Method in class ann4j.Layer
-
This function returns the number of neurons in the layer
- getSmallSignedRandom() - Static method in class ann4j.NN
-
It returns a random number between -0.5 and 0.5
- getTestingAccuracy() - Method in class ann4j.ModelEvaluator
-
This function returns the testing accuracy of the model
- getTestingFileReader() - Static method in class ann4j.parameter
-
This function returns the testingFileReader object
- getTrainingAccuracy() - Method in class ann4j.ModelEvaluator
-
This function returns the training accuracy of the model
- getTrainingFileReader() - Static method in class ann4j.parameter
-
This function returns the trainingFileReader object
- getWeight() - Method in class ann4j.Connection
-
This function returns the weight of the object
- getWeightedSum() - Method in class ann4j.Neuron
-
It calculates the weighted sum of the left connections of the neuron
H
- HiddenLayer - Class in ann4j
- HiddenLayer(int) - Constructor for class ann4j.HiddenLayer
- HiddenLayerNeuronBehaviour - Class in ann4j
I
- include() - Method in class ann4j.Neuron
-
This function sets the isIncluded variable to true after which it will be included in forward propagation
- initializeList(int) - Method in class ann4j.ModelEvaluator
-
Initialize the confusion matrix to all zeros
- initializeWeights() - Method in class ann4j.Connection
-
This function initializes the weight of the connection to a small random number
- inputArray - Variable in class ann4j.MNISTDataBaseFileReader
- InputFileReader - Class in ann4j
- InputFileReader(String) - Constructor for class ann4j.InputFileReader
- inputLayer - Variable in class ann4j.LayerManager
- inputLayer - Variable in class ann4j.Trainer
- InputLayer - Class in ann4j
- InputLayer(int) - Constructor for class ann4j.InputLayer
- InputLayerNeuronBehaviour - Class in ann4j
L
- label - Variable in class ann4j.MNISTDataBaseFileReader
- label - Variable in class ann4j.Trainer
- Layer - Class in ann4j
- Layer(int) - Constructor for class ann4j.Layer
- LayerManager - Class in ann4j
- LayerManager(int[]) - Constructor for class ann4j.LayerManager
- layerNum - Variable in class ann4j.Layer
- layerNum - Variable in class ann4j.Neuron
- leakyrelu(double) - Static method in class ann4j.NN
-
If the number is greater than 0, return the number, else return 0.1 times the number
- leftConnections - Variable in class ann4j.Neuron
- leftNeuron - Variable in class ann4j.Connection
- listOfLayers - Variable in class ann4j.LayerManager
- listOfNeurons - Variable in class ann4j.Layer
- lossFunction - Static variable in class ann4j.LayerManager
M
- main(String[]) - Static method in class Main
- Main - Class in Unnamed Package
- Main() - Constructor for class Main
- MeanSquaredErrorCalculator - Class in ann4j
- MeanSquaredErrorCalculator() - Constructor for class ann4j.MeanSquaredErrorCalculator
- MNISTDataBaseFileReader - Class in ann4j
- MNISTDataBaseFileReader(String, int) - Constructor for class ann4j.MNISTDataBaseFileReader
- ModelEvaluator - Class in ann4j
- ModelEvaluator() - Constructor for class ann4j.ModelEvaluator
- myBehaviour - Variable in class ann4j.Layer
- myBehaviour - Variable in class ann4j.Neuron
- myLayerManager - Variable in class ann4j.Trainer
- myWriter - Static variable in class ann4j.Writer
N
- Neuron - Class in ann4j
- Neuron() - Constructor for class ann4j.Neuron
- NeuronBehaviour - Interface in ann4j
- neuronNum - Variable in class ann4j.Neuron
- NeuronObserver - Class in ann4j
- NeuronObserver() - Constructor for class ann4j.NeuronObserver
- next() - Method in class ann4j.InputFileReader
-
This function goes to next line of the inputfile and is responsible for setting all input parameters
- next() - Method in class ann4j.MNISTDataBaseFileReader
-
It reads the next line of the file, converts it into a two double arrays, and then sets the label and expected output array
- NN - Class in ann4j
- notifyObservers(String) - Method in class ann4j.Neuron
-
For each observer in the observerList, call the update function of that observer, passing in the info and this neuron, which will be typecasted later.
- notifyObservers(String) - Method in interface ann4j.Observable
-
Notify all observers of a change in the subject.
- numberOfInputNeurons - Static variable in class ann4j.parameter
- numberOfOutputNeurons - Static variable in class ann4j.parameter
O
- Observable - Interface in ann4j
- observableList - Variable in class ann4j.NeuronObserver
- Observer - Interface in ann4j
- observerList - Variable in class ann4j.Neuron
- outputLayer - Variable in class ann4j.LayerManager
- OutputLayer - Class in ann4j
- OutputLayer(int) - Constructor for class ann4j.OutputLayer
- outputLayerLength - Variable in class ann4j.MNISTDataBaseFileReader
- OutputLayerNeuronBehaviour - Class in ann4j
P
- parameter - Class in ann4j
- parameter() - Constructor for class ann4j.parameter
- printConfusionMatrix() - Method in class ann4j.Trainer
-
This function prints the confusion matrix of the model
- printConfusionMatrix(InputFileReader) - Method in class ann4j.ModelEvaluator
-
It prints the confusion matrix
- printWeights() - Method in class ann4j.Layer
-
It prints the weights of the neurons
R
- readLineToDoubleArray() - Method in class ann4j.MNISTDataBaseFileReader
-
It reads the next line of the file, splits it into an array of strings, and then converts that array of strings into an array of doubles
- rectify(double) - Static method in class ann4j.parameter
- registerObserver(Observer) - Method in class ann4j.Neuron
- registerObserver(Observer) - Method in interface ann4j.Observable
-
Register an observer to be notified when the data changes.
- relevance - Variable in class ann4j.Neuron
- relevancePropagate() - Method in class ann4j.Layer
-
This function iterates through the list of neurons and calls the relevancePropagate method on each neuron
- relevancePropagate() - Method in class ann4j.Neuron
-
The function `relevancePropagate()` is called on the `myBehaviour` object, which is of type `Behaviour`, and the `this` object is passed as an argument
- relevancePropagate(int, int) - Method in class ann4j.LayerManager
-
The function takes in the layer number and the neuron number of the output layer and then calculates the relevance of each pixel in the input layer
- relevancePropagate(int, int) - Method in class ann4j.Trainer
-
This function propagates relevance from the output layer to the input layer
- relevancePropagate(Neuron) - Method in class ann4j.HiddenLayerNeuronBehaviour
- relevancePropagate(Neuron) - Method in class ann4j.InputLayerNeuronBehaviour
- relevancePropagate(Neuron) - Method in interface ann4j.NeuronBehaviour
-
This function propagates the relevance from the output layer to the input layer
- relevancePropagate(Neuron) - Method in class ann4j.OutputLayerNeuronBehaviour
- relu(double) - Static method in class ann4j.NN
-
If the number is greater than 0, return the number.
- reset() - Method in class ann4j.ModelEvaluator
-
This function resets the confusion matrix, the correct counter, and the turns counter
- resetConfusionMatrix() - Method in class ann4j.ModelEvaluator
- restart() - Method in class ann4j.InputFileReader
-
This function restarts the file reader.
- restart() - Method in class ann4j.MNISTDataBaseFileReader
- rightConnections - Variable in class ann4j.Neuron
- rightNeuron - Variable in class ann4j.Connection
S
- setActivation(double) - Method in class ann4j.Neuron
-
This function sets the activation of the neuron to the value passed in as a parameter
- setBatchsize(int) - Static method in class ann4j.parameter
- setBehaviour() - Method in class ann4j.HiddenLayer
- setBehaviour() - Method in class ann4j.InputLayer
- setBehaviour() - Method in class ann4j.Layer
-
The setBehaviour() function is an abstract function that is used to set the behaviour of the animal.
- setBehaviour() - Method in class ann4j.OutputLayer
- setBehaviour(NeuronBehaviour) - Method in class ann4j.Neuron
-
This function sets the behaviour of the neuron to the behaviour passed in as a parameter.
- setBias() - Static method in class ann4j.NN
-
This function returns a random number between 0 and 0.1
- setBiasLearningRate(double) - Static method in class ann4j.parameter
-
This function sets the learning rate for the bias
- setDelta() - Method in class ann4j.Neuron
-
The delta difference of the neuron in layer has been changed
- setDelta(Neuron) - Method in class ann4j.HiddenLayerNeuronBehaviour
- setDelta(Neuron) - Method in class ann4j.InputLayerNeuronBehaviour
- setDelta(Neuron) - Method in interface ann4j.NeuronBehaviour
-
This function sets the delta value of the neuron
- setDelta(Neuron) - Method in class ann4j.OutputLayerNeuronBehaviour
- setEpsillion(double) - Static method in class ann4j.parameter
-
This function sets the epsillion value to the value passed in
- setExpectedOutputArray(ArrayList<Double>) - Method in class ann4j.LayerManager
-
This function takes an ArrayList of Doubles as an argument and sets the ExpectedOutputArrayList variable to the argument
- setFile(String) - Static method in class ann4j.Writer
- setInput(ArrayList<Double>) - Method in class ann4j.InputLayer
-
This is setting the activation of each neuron in the input layer to the corresponding value in the input array
- setInputLayer(ArrayList<Double>) - Method in class ann4j.LayerManager
-
This function takes an ArrayList of Doubles and sets the inputLayer's input to that ArrayList
- setLayerArray(int...) - Static method in class ann4j.parameter
- setLayerNum(int) - Method in class ann4j.Layer
-
This function sets the layer number for each neuron in the layer
- setLayerNum(int) - Method in class ann4j.Neuron
-
This function sets the layer number of the neuron
- setLearningRate(double) - Static method in class ann4j.parameter
-
This function sets the learning rate of the neural network
- setModel(LayerManager) - Method in class ann4j.NeuronObserver
-
This function sets the model to be observed.
- setNeuronNum(int) - Method in class ann4j.Neuron
-
This function sets the number of neurons in the layer
- setNeuronNumberToBeTestedinRelavancePropagation(double) - Static method in class ann4j.parameter
- setNeuronNumberToBeTestedinRelavancePropagation(Double) - Static method in class ann4j.LayerManager
-
This function sets the number of neurons to be tested in relevance propagation
- setOutputFile(String, boolean) - Static method in class ann4j.parameter
-
It sets the output file and enables/disables printing in console.
- setPrintInConsoleEnabled(boolean) - Static method in class ann4j.Writer
-
It sets the value of the static variable printInConsole to the value of the parameter bool.
- setRectificationFunction(String) - Static method in class ann4j.parameter
-
This function sets the rectification function to be used in the network
- setTestingaccuracy(double) - Method in class ann4j.ModelEvaluator
-
This function sets the testing accuracy of the model
- setTestingFileReader(InputFileReader) - Static method in class ann4j.parameter
- setTestingFileReader(String, String) - Static method in class ann4j.parameter
-
It sets the testing file reader to the required file reader.
- setTrainingaccuracy(double) - Method in class ann4j.ModelEvaluator
-
This function sets the training accuracy of the model
- setTrainingFileReader(InputFileReader) - Static method in class ann4j.parameter
- setTrainingFileReader(String, String) - Static method in class ann4j.parameter
- sigmoid(double) - Static method in class ann4j.NN
-
The sigmoid function takes a number and returns a number between 0 and 1
- singleFileReader - Variable in class ann4j.MNISTDataBaseFileReader
- softplus(double) - Static method in class ann4j.NN
-
The softplus function is a smooth approximation of the rectifier function
T
- tanh(double) - Static method in class ann4j.NN
-
The tanh function takes a number and returns the hyperbolic tangent of that number
- test(int) - Method in class ann4j.Trainer
-
Used to test the model.
- testingFileReader - Variable in class ann4j.Trainer
- toString() - Method in class ann4j.Connection
-
This function returns a string that contains the neuron numbers of the neurons that are connected by this connection, as well as the weight of the connection
- toString() - Method in class ann4j.Layer
-
This function returns a string that contains the layer number, the length of the list of neurons, and the toString() function of each neuron in the list of neurons
- toString() - Method in class ann4j.LayerManager
-
This function returns a string representation of the neural network
- toString() - Method in class ann4j.Neuron
-
The toString() function returns a string representation of the object
- train() - Method in class ann4j.Trainer
-
The function takes in an input layer and an expected output layer, and then it uses the input layer to predict the expected output layer
- train(int, int) - Method in class ann4j.Trainer
-
The function trains the neural network by reading the training data from the mnist database and updating the weights and biases of the neural network
- Trainer - Class in ann4j
- Trainer() - Constructor for class ann4j.Trainer
- trainingFileReader - Variable in class ann4j.Trainer
U
- update(String, Observable) - Method in class ann4j.NeuronObserver
-
The update function is called when the observable object is changed
- update(String, Observable) - Method in interface ann4j.Observer
-
The update function is called when the observable object is changed.
- updateConfusionMatrix(ArrayList<Double>, int) - Method in class ann4j.ModelEvaluator
-
This function updates the confusion matrix by comparing the expected output array with the predicted output array
- updateConfusionMatrix(ArrayList<Double>, ArrayList<Double>) - Method in class ann4j.ModelEvaluator
-
This function takes in two arrays, one of expected outputs and one of actual outputs, and updates the confusion matrix accordingly __ __ __ __ |TP FP | 0 1 |FN TN | 2 3
- updatePredictionData(double, double, double) - Method in class ann4j.ModelEvaluator
-
This function updates the prediction data
W
- write(Object...) - Static method in class ann4j.Writer
-
It takes in a variable number of arguments and prints them out
- writeln(Object...) - Static method in class ann4j.Writer
- Writer - Class in ann4j
- Writer() - Constructor for class ann4j.Writer
All Classes and Interfaces|All Packages